State Space Representation for Verification of Open Systems
نویسندگان
چکیده
When designing an open system, there might be no implementation available for certain components at verification time. For such systems, verification has to be based on assumptions on the underspecified components. When component assumptions are expressed in Hennessy-Milner logic (HML), the state space of open systems can be naturally represented with modal transition systems (MTS), a graphical specification language equiexpressive with HML. Having an explicit state space representation supports state space exploration based verification techniques. Besides, it enables proof reuse and facilitates visualization for the user guiding the verification process in interactive verification. As an intuitive representation of system behavior, it aids debugging when proof generation fails in automatic verification. However, HML is not expressive enough to capture temporal assumptions. For this purpose, we extend MTSs to represent the state space of open systems where component assumptions are specified in modal μ-calculus. We present a two-phase construction from process algebraic open system descriptions to such state space representations. The first phase deals with component assumptions, and is essentially a maximal model construction for the modal μ-calculus. In the second phase, the models obtained are combined according to the structure of the open system to form the complete state space. The construction is sound and complete for systems with a single unknown component and sound for those without dynamic process creation. For establishing open system properties based on the representation, we present a proof system which is sound and complete for prime formulae.
منابع مشابه
Reachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملA Hybrid Meta-heuristic Approach to Cope with State Space Explosion in Model Checking Technique for Deadlock Freeness
Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large s...
متن کاملBibliography of Theoretical Computer
References [1] I. Aktug and D. Gurov. State space representation for verification of open systems. [5] Mads Dam. Decidability and proof systems for language-based non-interference relations.
متن کاملAlgorithmic Verification Techniques for Mobile Code
Modern computing platforms strive to support mobile code without putting system security at stake. These platforms can be viewed as open systems, as the mobile code adds new components to the running system. Establishing that such platforms function correctly can be divided into two steps. First, it is shown that the system functions correctly regardless of the mobile components that join it, p...
متن کاملdominating subset and representation graph on topological spaces
Let a topological space. An intersection graph on a topological space , which denoted by , is an undirected graph which whose vertices are open subsets of and two vertices are adjacent if the intersection of them are nonempty. In this paper, the relation between topological properties of and graph properties of are investigated. Also some classifications and representations for the graph ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006